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We describe the Bose-Einstein condensate of magnetic bosonic quasiparticles in insulating spin systems
using a phenomenological standard functional method for T=0. We show that results that are already known
from advanced computational techniques immediately follow. The inclusion of a perturbative anisotropy term
that violates the axial symmetry allows us to remarkably well explain a number of experimental features of the
dimerized spin-1/2 system TlCuCl3. Based on an energetic argument we predict a general intrinsic instability
of an axially symmetric magnetic condensate toward a violation of this symmetry, which leads to the sponta-
neous formation of an anisotropy gap in the energy spectrum above the critical field. We, therefore, expect that
a true Goldstone mode in insulating spin systems, i.e., a strictly linear energy-dispersion relation down to
arbitrarily small excitations energies, cannot be observed in any real material.
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I. INTRODUCTION

The concept of the Bose-Einstein condensation �BEC�,
i.e., the occupation of a single-quantum state by a macro-
scopic number of bosons, has been extended from real
bosonic particles to various types of quasiparticles with inte-
ger total spin.1–11 Such discrete magnetic, electronic, or lat-
tice excitations are then treated as a set of bosons forming a
Bose gas.9 These quasiparticles usually possess a small ef-
fective mass, which permits one to study BEC even at room
temperature.11 Both experiment10,12 and theory13,14 suggest
that the occurrence of a BEC in a three-dimensional �3D�
interacting Bose system has its origin in the spontaneous
breaking of the U�1� symmetry, thereby leading to a gapless
and linear excitation spectrum in the long-wavelength limit,
i.e., to a Goldstone mode.15

Experimental observations in a number of quantum spin
systems can be explained within the theory of BEC, e.g., by
a condensation of triplet states in dimerized spin-1/2 systems
�hereafter called triplons� such as TlCuCl3.3,4,16 The bosonic
character of these magnetic quasiparticles allows one to de-
scribe this spin-dimer system as a weakly interacting Bose
gas. Inelastic neutron-scattering measurements in the con-
densate phase of TlCuCl3 revealed, in accordance with the-
oretical investigations,17 the presence of a seemingly gapless
and linear excitation spectrum down to very low excitation
energies of the order of 0.75 meV in �0H=14 T.4 This ob-
servation has been interpreted as a manifestation of the Gold-
stone mode.

In the last years various scenarios for the consequences of
anisotropy on the properties of a magnetic BEC have been
discussed in detail.18–22 The presence of any kind of aniso-
tropy will, in principle, explicitly break the rotational �i.e.,
axial� symmetry of the bosonic system.21 The degree of
spontaneous U�1� symmetry breaking then depends on the
order of magnitude of the anisotropic terms compared to the
energy scale associated with the isotropic interactions of the

Bose gas.22 The relatively large triplon bandwidth in
TlCuCl3 �Ref. 23� exceeds the spin-nonconserving terms,
such as an intradimer exchange �IE� anisotropy and a
Dzyaloshinsky-Moriya �DM� anisotropy, by more than 2 or-
ders of magnitude.18,19,21 Nonetheless, the question to what
extent the existing anisotropies in TlCuCl3 do affect the mag-
netic phase diagram, the Goldstone mode, and other mea-
surable quantities of TlCuCl3 is still an issue under
investigation.18,19,21,24

By taking a perturbative anisotropy term into account we
will consider in the following the influence of an IE-like
anisotropy that explicitly violates the axial symmetry, and we
will study the consequences on the condensate phase of
TlCuCl3. The influence of a possible DM-type anisotropy20,21

is not considered here.25 Based on an energy consideration
we will then argue that, as a consequence of an unavoidable
magnetoelastic coupling, even an axially symmetric mag-
netic system is unstable toward a spontaneous violation of
this symmetry as soon as the BEC state is formed.

II. FUNCTIONAL METHOD

We describe the condensate at T=0 with a macroscopic
wave function, a complex scalar field ��r , t�. Standard func-
tional methods used to describe a dilute Bose gas in the
classical limit at T=0 yield an extremal condition for the
potential energy per dimer,14 namely,

u��� = − ��†� + �v0

2
��†���

�=�0

2

= min, �1�

where � is the chemical potential, v0 is a constant related to
a repulsive short-range interaction,13 and �† is the complex
conjugate of �. The minimum value �0 then determines the
condensate fraction nc�0�=�0

†�0, here defined as nc�0�
=Nc /Nd, with Nc the number of condensed triplons and Nd
the number of dimers.
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In a dimerized antiferromagnet, the chemical potential is
�=g�B�0�H−Hc�, where �B is the Bohr magneton, g is the
Landé g factor, and Hc is the critical magnetic field beyond
which a triplet S=1 state is energetically equally favorable as
the singlet S=0 state. This can be expressed in terms of the
energy gap �=g�B�0Hc separating at zero field the S=1 and
the S=0 states, respectively.

In the case of an explicitly violated axial symmetry we
may include a perturbation term ��̃����+�†�†� �Refs. 1 and
21� to the potential energy that can arise in a real magnetic
system from various sources such as anisotropic intradimer

and interdimer interaction constants, J and J̃, respectively.
For TlCuCl3 we have, for example, �0Hc�5.6 T,26 v0 /kB
=315 K,27 and a ��̃� of the order of 0.01 meV,18,21 depending
on the orientation of the magnetic field H with respect to the
crystal lattice.18 Such an anisotropy term may arise from a
pre-existing violated axial symmetry of the system or from a
spontaneous distortion at the magnetic phase transition that
we will discuss below. We, therefore, have to minimize

u��� = − ��†� + ��̃���� + �†�†� +
v0

2
��†��2, �2�

where we assume that Hc itself is at first unchanged by the
presence of the small perturbative anisotropy ��̃���.

We first want to compare the results of this simple formal-
ism with corresponding predictions from advanced Hartree-
Fock �HF� computations and with experimental data on
TlCuCl3. Despite the simple formalism used here, we can
later make specific predictions that would otherwise be more
difficult to obtain.

III. RESULTS

A. Comparison with results from the Hartree-Fock
calculations

Without any explicit anisotropy �i.e., ��̃�=0� we obtain the
well-known minimum value �0

†�0=nc�0�=� /v0.3 The phase
� of �0= ��0�ei� is not fixed in this case, leading to the u���
landscape sketched in Fig. 1 �left panel, “Mexican-hat poten-
tial”�. However, any nonzero value for ��̃� locks the phase of
�0 to the imaginary axis �i.e., �= �	 /2 and therefore �0
=const� and leads to an optimum value nc�0�= ��+2��̃�� /v0
in “Napoleon’s hat potential” �see Fig. 1, right panel�. The
minimum potential energy becomes umin=−��+2��̃��2 /2v0
which is smaller than in the axially symmetric case. The
saddle-point value for u on the real axis for �
2��̃� is
−��−2��̃��2 /2v0. Note that these energy densities are all ex-
pressed per dimer. The corresponding energies per triplon are
u /nc�0�.

A vanishing nc�0� is realized when ��+2��̃��=0. As a
consequence, the gap field Hc that would be observed in an
ideal system with axial symmetry is renormalized to a value
Hc

expt=Hc−�Hc �with �Hc=2��̃� /g�0�B� above which con-
densation occurs. Taking a reasonable value for ��̃�
�0.01 meV for TlCuCl3 �Refs. 18 and 21� and H �b with
g=2.06,18 we obtain a renormalization of the critical field
due to ��̃� alone by �0�Hc�0.2 T for this particular
magnetic-field direction.

The resulting condensate fraction, nc�0�=�expt /v0, where
�expt=g�B�0�H−Hc

expt�, is in full agreement with Hartree-
Fock calculations for spin dimer systems.3 In Fig. 2�a� we
show the triplon condensate fraction nc�0� as deduced from
our magnetization M�T ,H� data of TlCuCl3,28 see Fig. 2�b�,
that we have already corrected for a small fraction ñ of non-
condensed triplons.3 These data have been obtained from the
simple relation M�0�=g�Bn�0�Nd �with Nd as the number of
dimers and n�0� as the total triplon fraction at T=0�,3 without
assuming any specific value for v0. A linear fit to the data in
the dilute limit ��0Hc��0H�7.5 T �Ref. 21�� yields
�0Hc

expt=5.501�0.003 T and v0 /kB=311.4�0.5 Km3

which is in very good agreement with available literature
values.21,27,29 The deviation from the linear behavior at larger
magnetic fields can be attributed to the contribution of higher
triplet states.5 Our simple formalism does not include the
influence of such triplet states nor does it allow for a deter-
mination of ñ itself; but this latter correction is of the order
of a few percent at most in our data,3,28 as it is typical for a
weakly interacting Bose gas, see inset of Fig. 2�a�.

Focusing further on the effects of an explicit violation of
axial symmetry, the condensate fraction at T=0 is changed
by 2��̃� /v0 in our calculation, see Figs. 2�c� and 2�d�. If we
use the fact that the total triplon fraction n�0��nc�0� and
take the result n�Tc

BE�=n�0� /2 from Ref. 3 assuming a qua-
dratic triplon dispersion relation, we obtain a shift ��̃� /v0 in
n�Tc

BE� that is again in full agreement with the corresponding
HF calculations,21 see again Figs. 2�c� and 2�d�.

We may relate the minimum value umin at T=0 to the
transition temperature Tc

BE if we assume that �umin� /nc�0�, the
energy gain per triplon upon condensation, is proportional to
kBTc

BE with a field-dependent proportionality factor of the
order of unity. Any nonzero ��̃� leads to an increase in Tc

BE as
compared to the axially symmetric case, see Fig. 2�d�. This
trend can be clearly seen in the calculated M�T ,H� curves
from Ref. 21, where the minimum in M that is usually taken
as a criterion to define Tc

BE is shifted toward higher tempera-

FIG. 1. Potential energy u as a function of � for axial symmetry
�left panel, Mexican-hat potential� and violated axial symmetry
�right panel, Napoleon’s hat potential�, respectively. In the symmet-
ric case the minimum value umin=−�2 /2v0 is realized along a circle
�dashed line�, while in the anisotropic case isolated minima umin

=−��+2��̃��2 /2v0 are on the imaginary axis �filled circles�.
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tures as soon as ��̃�
0. If we again take ��̃�=0.01 meV we
obtain a shift in Tc

BE of the order of �Tc
BE���̃� /kB

� +0.1 K, which has to be compared to the result of the
more precise HF calculations with �Tc

BE� +0.5 K.21

As a consequence of the anisotropy term ��̃� the original
invariance of u��� with respect to a transformation �
→�ei� is lifted. The maximum variation in the potential en-
ergy per dimer u along the ellipsoid contour with local
minima in the radial ��� direction, see Fig. 1, is 4���̃� /v0 or

�̃�4��̃� per ground-state triplon. This determines the order

of magnitude of an anisotropy gap that can be calculated to

�̃=	8��̃�g�B�0�H−Hc�.21,30

Excitations above the ground state �0 with energies below

�̃ will clearly not show the typical gapless Goldstone-type
behavior as expected for an axially symmetric system. For

TlCuCl3 we calculate, with ��̃�=0.01 meV,18,21 a gap �̃
�0.3 meV for �0H=14 T along b, which is somewhat be-
low what has been resolved in inelastic neutron-scattering

measurements.4 For excitation energies larger than �̃ the
presence of an anisotropy gap may remain unnoticed, see
Fig. 2�e�.

In TlCuCl3 such a gap may arise from a pre-existing an-
isotropy that is already present in H=0.19 In the following
we argue, however, that even a perfectly axially symmetric
magnetic system is unstable toward a spontaneous violation
of this symmetry at Hc, which inevitably leads to the forma-

tion of a small anisotropy gap �̃ above Hc of real materials.

B. Instability of the condensate toward violation of axial
symmetry

A striking fact in our analysis is that the minimum poten-
tial energy per dimer is smaller with a nonzero ��̃� than in an
analogous axially symmetric system with ��̃�=0. This means
that a distortion of the original crystal symmetry may spon-
taneously occur at Hc together with an increase in ��̃�, pro-
vided that the total energy, including both magnetic and
crystal-lattice contributions, is lowered along with this dis-
tortion. This argument is so general that it should be appli-
cable to all insulating spin systems that are supposed to show
a Bose-Einstein condensation of magnetic bosonic quasipar-
ticles. As we do not make any specific assumptions on the
microscopic arrangement of the spin-carrying atoms, one
cannot make any more precise universal statement about the
details of the resulting lattice distortion.

The gain in potential energy per dimer upon condensation
in combination with this simultaneous distortion is 2��̃�2 /v0,
see Fig. 3�a�. If the critical field is approached from below
with H increasing, the parameter ��̃� may therefore jump dis-
continuously from zero to its optimum value either at Hc or
at a transition field Hc

� with Hc
exptHc

�Hc, while with H
decreasing the transition can take place at a different field in
the same magnetic-field interval, see gray shaded area in
Figs. 3�a� and 3�b�. In an ideal situation with a perfect axial
symmetry in H=0, the critical field Hc corresponds to a
“normal-state” value with ��̃�=0 that is determined only by
the gap energy, while in the condensate phase the effective
critical field is Hc

expt=Hc−�Hc�Hc, lowered by �Hc
=2��̃� /g�B�0 with respect to Hc due to the increase in ��̃�. If
the transition occurs at a transition field Hc

� that is strictly
larger than Hc

expt, one will observe at T=0 corresponding
small discontinuities in u ��u2��̃�2 /v0, see Fig. 3�a��, nc
��nc2��̃� /v0, see Fig. 2�c��, and M ��M =�ncg�BNd�,
which would qualify the transition as of weakly first order
with a maximum observable hysteresis width �Hc. The oc-
currence of hysteretic effects in a real material may depend,
however, on further conditions that are not considered here,
such as material-quality issues or the relevance of possible
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FIG. 2. �a� Condensate fraction nc�0�, noncondensed triplon
fraction ñ�0�, and the percentage of noncondensed triplons �inset�
�Ref. 28�. �b� Triplon-fraction n�0� data obtained from magnetiza-
tion M�T� data for H �b �see arrow for the �0H=9 T data and Ref.
28�. �c� Schematic representations of the effects of violated axial
symmetry on the triplon fraction at T=0 and at T=Tc

BE, �d� on the
triplon fraction at fixed magnetic field H
Hc �Refs. 3, 20, and 21�,
and �e� on the excitation spectrum E�k� �axes are not to scale�. Solid
and dashed lines represent an axially symmetric system and a sys-
tem with violated axial symmetry, respectively.
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quantum fluctuations at T=0 to the order of the phase tran-
sition.

Even if a nonzero ��̃� evolves continuously above the
critical field as a function of H along with a continuous struc-
tural distortion with no detectable hysteresis, one should still
be able to distinguish between the normal-state Hc extracted
from the experimental data taken below Hc

expt and a Hc
expt

�Hc from corresponding data taken well above Hc, respec-
tively, to obtain an estimate for ��̃� from the resulting differ-
ence �Hc. In any case, if Hc

expt�Hc
��Hc, one expects a

finite-energy difference 1.6��̃� at the transition field Hc
� be-

tween the lowest-triplon state and the singlet states, respec-
tively, see Fig. 3�b�.

A possible pre-existing anisotropy that may already be
present at H=0 �which is likely to be the case in TlCuCl3�
can be easily included in this formalism by identifying Hc
with a renormalized normal-state value that already contains
this pre-existing anisotropy. Any additional ��̃� that may de-
velop together with the lattice distortion around this critical
field will somewhat change the value of the anisotropy gap

�̃. The difference �Hc, however, and possible discontinuities
in u, nc, and M are determined by the additional ��̃� alone.

It is remarkable that electron-spin resonance �ESR� data
taken on TlCuCl3 do indeed show a clearly gapped behavior
at and above H=Hc

expt�b,18,19 as we sketched in Fig. 3�b�.
Moreover, the ESR frequencies due to the lowest triplon gap
in the normal phase for H �b extrapolate to zero at a some-

what larger Hc �by �0Hc�0.2 T� than the square-root-like
gap that we attribute to �̃�H� in the condensate phase and
that can be fitted nicely with a ��̃��0.016 meV, see energy-
level scheme in Fig. 3�b�. Our scenario may also be an ex-
planation for the observed abrupt changes in the 35Cl quad-
rupole shift24 that has been interpreted as an indication of a
weakly first-order lattice deformation, as well as for the pro-
nounced hysteretic behavior �with a �0�Hc�0.2–0.3 T� of
the observed peaks in the sound-attenuation data of TlCuCl3
at Hc�T�.31 These observations may indicate that ��̃� of
TlCuCl3 is indeed larger for H
Hc than well below this
value.

The present picture may also account for the first-order-
like features that have been seen in the x-ray data of the
spin-ladder compound Cu2�C5H12N2�2Cl4 �Ref. 32� and in
the magnetocaloric effect of the axially symmetric S=1 sys-
tem NiCl2-4SC�NH2�2 �Ref. 33� at the respective magnetic
phase transitions. It is also not unreasonable to assume that
the observed gap feature in the ESR data of this latter com-
pound at �0H=8 T �Ref. 34� is also related to a possible
lattice distortion.

Such a spontaneous distortion arising from the interplay
between the emerging magnetic Bose-Einstein condensate
and its host crystal that lowers the total energy, with a ten-
dency to increase or even create an anisotropy perpendicular
to the external magnetic field above Hc even in a perfectly
axially symmetric system, is rather unique and is reminiscent
of the spin-Peierls instability in one-dimensional magnetic
chains. A spin-Peierls-type scenario has indeed been sug-
gested to explain the NMR data on the spin-ladder com-
pound Cu2�C2H12N2�2Cl4 around its critical magnetic
field.35,36 Such an instability should be a universal feature of
magnetic BEC systems at their magnetic phase transition,
and it is not expected to occur in axially symmetric Bose
gases composed of real particles such as superfluid 4He or
atomic condensates, where the condensate cannot create an
axial-symmetry-breaking term by itself.

In a microscopic picture, the tendency of a magnetic con-
densate to spontaneously violate the axial symmetry can be
interpreted as a natural consequence of the transverse mag-
netic ordering that develops in the condensate phase and that
locks to the crystal lattice due to unavoidable magnetoelastic
coupling.3,37,38 As soon as the transverse magnetic moments
point to a specific energetically preferred crystal direction,
the phase � that is associated with the angle between these
moments and the crystal axes16 is indeed fixed �in TlCuCl3
with an angle ��39° to the a axis �Ref. 37��, and the mag-
netic analog to a supercurrent velocity vs=� /m��� �where
m� is the effective mass of a triplon� is naturally zero for

excitation energies below the anisotropy gap �̃. This gap
covers an excitation-frequency range that is crucial for ex-
periments that rely on the existence of a long-lived phase-
coherent condensate,9 such as the detection of a long-lived
spin supercurrent as in 3He–B,39,40 of macroscopic second-
sound-like oscillations as observed in superfluid 4He,41 or of
stable vortex-like structures as they have been observed in
superfluid 4He and in atomic condensates.42 To achieve a
lifetime of the order of seconds for a phase-coherent conden-
sate, a corresponding anisotropy gap may not exceed a few
femtoelectron volts.
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FIG. 3. �a� Potential energy per dimer and �b� energy-level
scheme of the lowest triplon branch of an axially symmetric system
���̃�=0, thick solid lines� and of a system that shows a spontaneous
axial distortion ���̃�
0� above Hc

� �thin lines and arrows, axes are
not to scale�, respectively. The gray shaded area indicates the maxi-
mum hysteresis width of a possible weakly first-order transition at
Hc

� with Hc
exptHc

�Hc �filled arrows: H increasing; open arrows:
H decreasing�. The dashed line in �b� reproduces the trend in the
ESR data from Refs. 18 and 19 for TlCuCl3 and H �b �see text�.
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In the absence of a Goldstone mode �for which all values
of the phase � have to be energetically equivalent�, the quan-
tity �0

†�0 in the zero-frequency limit does no longer represent
a condensate fraction, but it is rather related to the order
parameter characterizing the antiferromagnetic state.1

IV. CONCLUSIONS

We have analyzed the spontaneous symmetry breaking in
a Bose gas of magnetic bosonic quasiparticles in insulating
spin systems based on simple functional methods in the clas-
sical limit. Our results reproduce several results from earlier
HF approximated computations,3,20,21 and various experi-
mental findings in TlCuCl3 such as the occurrence and the
magnitude of an anisotropy gap18,19 and a weakly first-order-

like behavior at the magnetic phase transition24,31 can be ex-
plained. On the basis of an energetic argument we expect that
all magnetic BEC systems in insulating spin systems are in-
trinsically unstable toward a spontaneous anisotropic distor-
tion perpendicular to the external magnetic field, which leads
to the formation of an anisotropy gap that is seriously limit-
ing the lifetime of a phase-coherent condensate.
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